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ABSTRACT
Here we introduce an order k version of the generalized geometric distribution of
Kumar and Harisankar (Journal of Statistical Computation and Simulation, 2019)
and investigate some of its important properties by deriving an expression for its
probability generating function and probability mass function. Certain recurrence
relation for its probabilities, raw moments and factorial moments are also obtained,
and the maximum likelihood estimation of its parameters is discussed. Certain test
procedures are developed for testing the significance of the additional parameters
of the model. All these procedures discussed in the paper are illustrated with the
help of real life data sets. A simulation study is also considered for assessing the
performance of the estimators.

KEYWORDS
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1. Introduction

Count data modelling becomes very popular in many areas like Insurance, Ecology, En-
vironmental Science, Health etc., because of larger variance is than mean. Because of
the applications and elegant and mathematical tractable distributional form geometric
distribution attracts many research for count data modeling. Thus, recently several
methods have been proposed to construct new discrete distributions with higher flex-
ibility to model such data. Some of such generalization you can find in Jain and Con-
sul(1971), Philippou and Georghiou(1983), Tripahti et al.(1987). However researchers
still continuing to propose new generalization of these standard distributions. There
has been renewed interest in the study of discrete distributions of order k in the lit-
erature. Philippou (1984) introduced and studied a negative binomial distribution of
order k, which is also known as the type I waiting time distribution of order k. Fur-
ther, Philippou and Muwafi (1982) discussed the relationship between the geometric
distribution of order k and the Fibonacci sequence of order k. Philippou, A., Georghio,
C and Philippou, G (1983) derived the distribution of order k for the generalized ge-
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ometric distribution, the negative binomial distribution and the Poisson distribution
was derived as a limiting form of the corresponding negative binomial distribution.
Uppuluri and Patil (1983) provided another derivation of this probability using p.g.f.
Panaretos and Xekalaki (1986) obtained logarithmic distribution of order k as a limit-
ing form of the gamma-mixed Poisson distribution of order k. Recently Kumar (2009,
2010), Kumar and Shibu (2013), Kumar and Nair (2013a, 2013b) and Kumar and
Riyaz (2015, 2016) studied intervened Poisson distribution of order k, hyper-Poisson
distribution of order k and zero-inflated logarithmic series distribution of order k re-
spectively. For a detailed account of order k distributions and their applications see
Section 10.7 of Johnson et al. (2005).

Kumar and Harisankar (2019) proposed a generalized class of geometric distribution
namely “the generalized geometric distribution (GGD)” with the following p.g.f, for
x = 0, 1, 2, · · · , ρ > −1, λ > 0 and 0 < θ < 1.

H1(t) = 2F1(1, λ; ρ+ λ+ 1; θ (t− 1)), (1)

where

2F1(a1, a2, b; θ) =

∞∑
r=0

(a1)r(a2)r
(b)r

θr

r!
,

is the Gaussian hypergeometric function, in which (a)r = a(a+ 1) · · · (a+ r − 1) and
r is any positive integer with (a)0 = 1. For details regarding Gaussian hypergeometric
function see Mathai and Haubold (2008) or Slater (1966). Note that the GGD with
p.g.f (1) belongs to the generalized hypergeometric family of distributions and it also
belongs to the Kemp family of distributions, studied by Kumar (2009).

Through this paper we propose an order k version of the GGD which we termed
as “ stuttering generalized geometric distribution (SGGD)”. The paper is organized
as follows. In Section 2 we present the genesis of the SGGD and derive its important
properties such as its p.g.f., probability mass function (p.m.f), expressions of mean and
variance, recursion formulae for its probabilities, raw moments and factorial moments.
In Section 3, we discuss the estimation of the parameters of the SGGD by the method
of maximum likelihood. In Section 4, we derive the estimation of the parameters of the
SGGD by the method of maximum likelihood. In section 5 we discuss the applicability
of the model by fitting two real life data sets. In Section 6, we carried out a simulation
study for examining the performance of the maximum likelihood estimators of the
parameters of the distribution. Since the SGGD possess a stopped sum structure,
they will be helpful for modeling real world phenomena arising from various fields of
research such as actuarial science, biological sciences, operations research and physical
sciences. For details regarding the stopped sum distributions, see chapter 9 of Johnson
et.al. (2005).

Further we need the following series representation in the sequel.

∞∑
r=0

∞∑
s=0

A1(s, r) =

∞∑
r=0

r∑
s=0

A1(s, r − s) (2)
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For i = 0, 1, 2, · · · , define

Ω−1
i = 2F1(1 + i, λ+ i, ρ+ λ+ i+ 1;−

k∑
j=1

θj)

2. Derivation of the SGGD

Consider a sequence {Yn, n ≥ 1} of independent and identically distributed discrete
random variables, where Yn has a k-point distribution with probability generating
function (p.g.f.) G(t) =

∑k
j=0 vjt

j , where vj ≥ 0 for j = 1, 2, ..., k such that vk ̸= 0

and
∑k

j=1 vj = 1. Let X be a nonnegative integer valued random variable following

GGD with p.g.f (1). Define vj=θ
−1 θj , for j=1,2,...,k with θ =

∑k
j=1 θj . Suppose that

{Yn, n ≥ 1} and X are statistically independent. Define S0 = 0, then the p.g.f of

SX =
∑X

n=0 Yn is

P (t) = E(STX ) (3)

= 2F1(1, λ, ρ+ λ+ 1;

k∑
j=1

θj(t
j − 1))

Clearly, When k=1 the p.g.f (3) reduces to the p.g.f of the GGD as given in (1)
and when k=1, ρ=0 and λ=1, the p.g.f (3) reduces to the p.g.f of the zero-inflated
logarithmic series distribution (ZILSD) studied by Kumar and Riyaz (2016)

3. Properties

Let W be a random variable distributed as the SGGD with p.g.f. (3). Here, first
weobtain an expression for the p.m.f. of the SGGD through the following result.

Result 1. The p.m.f hx = P (W = x) of the SGGD with p.g.f (3) is the following,
for x = 0, 1, 2 · · · .

hx =
∑
Jx

(λ)x Ω−1
x

(ρ+ λ+ 1)x

k∏
j=1

x! θ
xj

j

xj !
, (4)

where
∑

Jx
denote the k-tuple sum over the test Jx = (x1, x2, ..., xk) :

∑k
j=1 jxj = x

and n =
∑k

j=1 xj .
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Proof. From (3) we have the following:

H(t) = 2F1(1, λ; ρ+ λ+ 1;

k∑
j=1

θj(t
j − 1)) (5)

=

∞∑
x=0

hx t
x (6)

On expanding the gauss hypergeometric function in (5), we get

H(t) =

∞∑
x=0

(1)x(λ)x
(ρ+ λ+ 1)x

(∑k
j=1 θj(t

j − 1))
)x

x!
(7)

H(t) =

∞∑
x=0

(1)x(λ)x
(ρ+ λ+ 1)x

x∑
r=0

(
x

r

)(∑k
j=1 θjt

j)x−r(−
∑k

j=1 θj)
r
)

x!
(8)

H(t) =

∞∑
x=0

(1)(x+r)(λ)(x+r)

(ρ+ λ+ 1)(x+r)

∞∑
r=0

(
x+ r

r

)(∑k
j=1 θjt

j)x(−
∑k

j=1 θj)
r
)

(x+ r)!
(9)

H(t) =

∞∑
x=0

(1)x(λ)x
(ρ+ λ+ 1)x

∞∑
r=0

(1 + x)r(λ+ x)r(−
∑k

j=1 θj)
r

(ρ+ λ+ x+ 1)r r!

(∑k
j=1 θjt

j)x
)

x!
(10)

Now by applying multinomial theorem in (7) to get the following.

H(t) =

∞∑
x=0

∑
Ix

(λ)x Ω−1
x

(ρ+ λ+ 1)x

k∏
j=1

x! θ
xj

j

xj !
tδ (11)

where δ =
∑k

j=1 jxj and
∑

Ix
denote the k-tuple sum over the test Ix =

{(x1, x2, ..., xk) :
∑k

j=1 xj = x} On equating the coefficients of tx on the right hand

side expressions of (6) and (11) we get (4).

Next we derive expressions for the mean and variance of the SGGD through the
following result.

Result 2. The mean and variance of the SGGD are the following, in which

Mean = b0

k∑
j=1

jθj (12)
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and

V ariance = b0 (

k∑
j=1

jθj)[b1 (

k∑
j=1

jθj) + 1− b0 (

k∑
j=1

jθj)] (13)

for i = 0, 1, 2..., bi =
(1+i)(λ+i)
(ρ+λ+1+i)

Proof. It follows from the fact that,

Mean = H1(1)

and

V ariance = H2(1) +H
′
(1)− [H

′
(1)]2,

where Hr(t) = dr H(t)
dtr /t = 1.

Result 3. For x ≥ 1, the following is a simple recursion formula for probabilities
hx = hx(1, λ; ρ+ λ+ 1) of the SGGD with p.g.f (3).

(x+ 1) hx+1(1, λ; ρ+ λ+ 1) =
λ (

∑k
j=1 jθj)

ρ+ λ+ 1
hx−j+1(2, λ+ 1; ρ+ λ+ 2) (14)

Proof. From (3), we have

H(t) =

∞∑
x=0

hx(1, λ; ρ+ λ+ 1)tx = 2F1(1, λ; ρ+ λ+ 1;

k∑
j=1

θj(t
j − 1)) (15)

Differentiating the equation (15) with respect to t, we get

∞∑
x=0

x hx(1, λ; ρ+λ+1) tx−1 =
λ

∑k
j=1 jθjt

j−1

ρ+ λ+ 1
2F1(2, λ+1; ρ+λ+2;

k∑
j=1

θj(t
j − 1))

(16)
In (15) by replacing 1, λ and ρ + λ + 1 with 2, λ + 1 and ρ + λ + 2 respectively, we
obtain

2F1(2, λ+ 1; ρ+ λ+ 2;

k∑
j=1

θj(t
j − 1)) =

∞∑
x=0

hx(2, λ+ 1; ρ+ λ+ 2) tx (17)

Substitute (17) in (16) to get

∞∑
x=0

(x+1) hx+1(1, λ; ρ+λ+1) tx =
λ

ρ+ λ+ 1

k∑
j=1

jθj

∞∑
x=0

hx−j+1(2, λ+1; ρ+λ+2) tx.

(18)
□

On equating the coefficients of tx on both sides of (18) we get (14).
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Result 4. The following is a simple recursion formula for raw moments
µr = µr(1, λ; ρ+ λ+ 1) of the SGGD, for r ≥ 0.

µr+1(1, λ; ρ+ λ+ 1) =
λ

ρ+ λ+ 1

r∑
s=0

k∑
j=1

ȷs+1 θj µr−s(2, λ; ρ+ λ+ 2) (19)

Proof. By definition, the characteristic function of the SGGD is given by

ψ(t) =

∞∑
r=0

µr(1, λ; ρ+ λ+ 1)
(it)r

r!
(20)

= 2F1(1, λ; ρ+ λ+ 1;

k∑
j=1

θj(e
itj − 1))

By using (20) with 1, λ and ρ+λ+1 replaced by 2, λ+1 and ρ+λ+2 respectively,
we obtain

2F1(2, λ+ 1; ρ+ λ+ 2;

k∑
j=1

θj(e
itj − 1)) =

∞∑
r=0

µr(2, λ+ 1; ρ+ λ+ 2)
(it)r

r!
. (21)

Differentiate (20) with respect to t, to get

∞∑
r=0

i µr+1(1, λ; ρ+ λ+ 1)
(it)r

r!
=

i λ
∑k

j=1 θje
itj

ρ+ λ+ 1
(22)

×2F1(2, λ+ 1; ρ+ λ+ 2;

k∑
j=1

θj(e
itj − 1))

which on simplification gives

ρ+ λ+ 1

λ

∞∑
r=0

µr+1(1, λ; ρ+ λ+ 1)
(it)r

r!
=

k∑
j=1

θje
itj (23)

×
∞∑
r=0

µr(2, λ+ 1; ρ+ λ+ 2)
(it)r

r!
.

On expanding the exponential functions in (23) and applying (2) to obtain

ρ+ λ+ 1

λ

∞∑
r=0

µr+1(1, λ; ρ+ λ+ 1)
(it)r

r!
= (24)

k∑
j=1

r∑
s=0

(
r

s

)
js+1θj µr−s(2, λ+ 1; ρ+ λ+ 2)

Equating the coefficients of (it)r (r!)−1 on both sides of (24), we get (19). □
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Result 5. The following is a simple recursion formula for factorial moments
µ[r] = µ[r](1, λ; ρ+ λ+ 1) of the SGGD, for r ≥ 0.(

ρ+ λ+ 1

λ

)
µ[r+1](1, λ; ρ+ λ+ 1) =

k∑
j=1

j−1∑
m=0

(
j − 1

m

)
j θj r

(m) µr−m(2, λ; ρ+ λ+ 2)

(25)

Proof. The factorial moment generating function F(t) of the SGGD is given by

F (t) =

∞∑
r=0

µ[r]
tr

r!
(26)

= 2F1[1, λ; ρ+ λ+ 1;

k∑
j=1

θj((t+ 1)j − 1)].

From (26) with 1, λ and ρ+ λ+1 changed by 2, λ+1 and ρ+ λ+2 respectively, we
have

2F1(2, λ+ 1; ρ+ λ+ 2;

k∑
j=1

θj((t+ 1)j − 1)]) =

∞∑
r=0

µr(2, λ+ 1; ρ+ λ+ 2)
tr

r!
. (27)

On differentiating (26) with respect to t, we get

∞∑
r=0

µ[r+1](1, λ; ρ+ λ+ 1)
tr

r!
=

λ

ρ+ λ+ 1

k∑
j=1

jθj(t+ 1)j−1

×2F 1[2, λ+ 1; ρ+ λ+ 2;

k∑
j=1

θj((t+ 1)j − 1)]

(28)

Equations (27)and (28) together implies

∞∑
r=0

µ[r+1](1, λ; ρ+ λ+ 1)
tr

r!
=

λ

ρ+ λ+ 1

∞∑
r=0

k∑
j=1

j−1∑
m=0

(
j − 1

m

)
jθj

×µr(2, λ+ 1; ρ+ λ+ 2)
tr+m

r!
(29)
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Applying the series representation (2) in (28) to obtain

ρ+ λ+ 1

λ

∞∑
r=0

µ[r+1](1, λ; ρ+ λ+ 1)
tr

r!
=

∞∑
r=0

k∑
j=1

jθj

j−1∑
m=0

(
j − 1

m

)
r(m)

×µr−m(2, λ+ 1; ρ+ λ+ 2)
tr

r!
(30)

By equating the coefficients of tr (r!)−1 on both sides of (30), we get (25). □

4. Estimation

In this section we discuss the estimation of the parameters ρ, λ, θ1, θ2,...,θk (for a
fixed value of k) of the SGGD by the method of maximum likelihood. Let a(x) be the
observed frequency of x events based on the observations from a sample with inde-
pendent components and let y be the highest value of the x observed. The likelihood
function of the sample is

L =

y∏
x=0

[hx]
a(x), (31)

Taking logarithm on both sides of (31) we get

lnL =

y∑
x=0

a(x) lnhx (32)

Let ρ̂, λ̂, θ̂1, θ̂2, θ̂3,...,θ̂k be the MLEs of ρ, λ, θ1, θ2, θ3,...,θk respectively. Now the MLEs
of the parameters are obtained by solving the following likelihood equations, obtained
from (32) on differentiation with respect to ρ, λ, θi’s respectively and equating to zero.
Then

∂ logL

∂ρ
= 0 (33)

or equivalently

y∑
x=0

a(x)[υ(ρ+ λ+ x+ 1)− υ(ρ+ λ+ 1)

+Ω−1
x

∞∑
r=0

(1 + x)r(λ+ x)r(
∑k

j=1−θj)r

(ρ+ λ+ x+ 1)rr!
[υ(ρ+ λ+ x+ 1)

−υ(ρ+ λ+ x+ r + 1)]] = 0,

∂ logL

∂λ
= 0 (34)
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or equivalently

y∑
x=0

a(x) [υ(λ+ x)− υ(λ)υ(ρ+ λ+ x+ 1)− υ(ρ+ λ+ 1)

−Ω−1
x

∞∑
r=0

(1 + x)r(λ+ x)r(
∑k

j=1 θj)
r

(ρ+ λ+ x+ 1)r r!

υ(ρ+ λ+ x+ 1)− υ(ρ+ λ+ x+ r + 1) + υ(λ+ r + x)− υ(λ+ x)] = 0,

∂ logL

∂θi
= 0 (35)

or equivalently

y∑
x=0

a(x) [Ω−1
x

∞∑
r=0

(λ)r(
∑k

j=1 θj)
r−1

(ρ+ λ+ 1)r (r − 1)!
+

1

ϕ(x; ρ∗)

∑
Ix

[
x! θx1

1 θ
x2

2 ..θ
xi−1

i ..θxk

k

x1!x2!..(xi − 1)!xi!..xk!

]
= 0,

where

υ(ρ) = [Γ(ρ)]−1 d Γ(ρ)

dρ
,

and

ϕ(x; ρ∗) =
∑
Ix

(1)x

k∏
j=1

θ
xj

j

xj !
.

On solving the log-likelihood equations by using some mathematical software say
MATHEMATICA one can obtain the maximum likelihood estimators of the parame-
ters ρ, λ, θ′is of the SGGD.

5. Applications

For numerical illustration, we have considered two real life data application. The first
data set is a sample consisting of counts of the number of eggs of an intestinal trema-
tode, Schistosoma Mansoni, on single slides studied by Muench (1938) from 926 inhab-
itants in an Egyptian village. While the second data set is on the number of European
red mite on each leave based on an experiment with 150 leaves from apple trees taken
from Bliss et al (1953) . We have fitted the Generalized Poisson distribution(GP), the
Generalized geometric distribution(GGOD) by Gomez-Deniz(2010), the GGD by Ku-
mar and Harisankar(2019) and the SGGD to these data sets and the results obtained
along with the corresponding values of the expected frequencies, Chi-square statistic,
degrees of freedom (d.f), Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC), Corrected Akaike information criterion (AICc) in respect of each
of the models are presented in Tables 1 and 2 respectively. Based on the computed
values of the Chi-square statistic, AIC, BIC and AICc values it can be observed that
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the SGGD(k=3) gives better fit to both the data sets considered here compared to
the existing models the GP, the GGOD, the GGD.

Table 1.: Observed frequencies and computed values of ex-
pected frequencies of the the GD, the GGD and the SGGD
by the method of maximum likelihood for the first data set.

x
Observed Expected frequency by MLE

GP GGOD GGD SGGD
k=2 k=3

0 603 574.23 564.34 535.03 618.33 604.84
1 112 202.16 178.12 210.15 130.48 115.81
2 93 82.60 109.47 101.09 87.74 92.17
3 53 31.50 38.25 40.09 39.04 52.29
4 19 14.57 16.44 17.61 21.36 21.10
5 21 9.54 10.26 11.11 8.94 15.89
6 7 5.72 5.22 5.15 5.03 10.03
7 6 3.15 2.85 3.43 2.96 6.84
8 7 1.44 0.91 1.52 1.77 4.40
9 5 0.69 0.14 0.72 0.35 2.63
Total 926 926 926 926 926 926
d.f 5 4 4 3 2
Estimates
of

λ1=0.52 θ=1.15 ρ=-0.04 ρ=-0.86 ρ=-0.91

parameters λ2=0.21 α=0.16 θ=0.55 θ1=0.40 θ1=0.58
λ=2.89 θ2=0.24 θ2=0.22

λ=0.09 θ3=0.10
λ=0.06

χ2-
value

103.41 58.46 95.59 27.14 4.14

AIC 2470.70 2482.24 2572.72 2507.88 2431
BIC 2471 2483.14 2573.62 2509.08 2432.50
AICc 2470.95 2484.24 2574.72 2511.88 2441.50

Table 2.: Observed frequencies and computed values of ex-
pected frequencies of the the GD, the GGD and the SGGD
by the method of maximum likelihood for the second data
set.

x
Observed Expected frequency by MLE

GP GGOD GGD SGGD
k=2 k=3

0 1333 1273.36 1314.05 1340.16 1311.23 1334.21
1 404 446.35 423.25 411.34 414.65 401.34
2 133 156.22 159.66 135.09 140.33 130.76
3 43 54.67 38.11 40.92 50.05 46.53
4 25 19.13 12.32 14.84 22.22 20.14

Continued · · ·
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x
Observed Expected frequency by MLE

GP GGOD GGD SGGD
k=2 k=3

5 10 6.69 7.65 8.07 12.58 11.33
6 4 3.34 4.29 5.75 5.40 7.16
7 4 1.82 1.95 3.21 3.28 4.25
8 1 0.28 0.54 1.62 1.32 2.44
9 2 0.10 0.16 0.61 0.66 1.32
10 2 0.03 0.02 0.24 0.25 0.88
11 0 0.01 0.008 0.11 0.07 0.51
12 1 0.001 0.0001 0.06 0.01 0.23
Total 1962 1962 1962 1962 1962 1962
d.f 4 4 4 3 2
Estimates
of

λ1=0.72 θ=0.96 ρ=-0.53 ρ=-0.47 ρ=-0.07

parameters λ2=0.24 α=0.10 θ=0.58 θ1=0.62 θ1=0.85
λ=1.08 θ2=0.10 θ2=0.03

λ=1.55 θ3=0.001
λ=2.42

χ2-
value

28.89 11.73 13.24 6.35 2.86

AIC 2470.70 2572.72 2464.52 2507.88 2431
BIC 2471 2573.62 2465.42 2509.08 2432.50
AICc 2470.95 2574.72 2466.52 2511.88 2441.50

6. Simulation

To examine the performance of the MLEs, a simulation procedure was conducted for
different sample sizes (n= 100, 200, 500). We simulated 1000 samples from the SGGD
and then estimated the parameters by the maximum-likelihood method. By using sim-
ulated observations, we estimated the parameters ρ, λ, θ1, θ2, θ3 and θ4 of the SGGD
and thereby computed the values of the absolute bias and mean squared errors of each
of the estimators. The results obtained are presented in presented in Table 3 and 4,
from which it can be observed that both the absolute values of bias and standard errors
of the estimators of the parameters are in decreasing order as the sample size increases.

Table 3.: Absolute bias and standard errors in the parenthesis
of the estimators of the parameters ρ, λ, θ1, θ2, θ3 and θ4 of
the SGGD for k=4 corresponding to the parameter set ρ=
-0.75, λ=0.55, θ1=0.35, θ2=0.24, θ3=0.09, θ4=0.005 .

Parameter set
Sample size MLE

ρ̂ λ̂ θ̂1 θ̂2 θ̂3 θ̂4

(i)
n = 100 0.541 0.28 0.14 0.12 0.05 0.08

(0.416) (0.125) (0.081) (0.045) (0.009) (0.041)
Continued · · ·
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Sample Size
(t1, t2) MLE

ρ̂ k̂ λ̂1 λ̂2 θ̂3 θ̂4
n = 200 0.224 0.10 0.08 0.03 0.01 0.004

(0.281) (0.082) (0.041) (0.005) (0.002) (0.0008)
n = 500 0.12 0.06 0.04 0.02 0.048 0.012

(0.064) (0.021) (0.006) (0.001) (0.0006) (0.0004)

Table 4.: Absolute bias and standard errors in the parenthesis
of the estimators of the parameters ρ, λ, θ1, θ2 and θ3 of the
SGGD for k=3 corresponding to the parameter set ρ= -0.92,
λ=0.95, θ1=0.24, θ2=0.10, θ3=0.02.

Parameter set
Sample size MLE

ρ̂ λ̂ θ̂1 θ̂2 θ̂3

(ii)
n = 100 0.26 0.44 0.19 0.06 0.05

(0.141) (0.214) (0.101) (0.0013) (0.01)
n = 200 0.18 0.31 0.04 0.005 0.032

(0.082) (0.141) (0.054) (0.0012) (0.0024)
n = 500 0.06 0.11 0.008 0.0002 0.002

(0.035) (0.084) (0.004) (0.00068) (0.0012)
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